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Theory of the Universal and Nonuniversal 
Quantities of Fluids at the Critical Point 1 

A. Parola,  2"3 A. Meroni ,  4 and L. Reatto 4 

We show that the hierarchical reference theory is an accurate global theory of 
fluids at least above the critical temperature T c. The hierarchy is truncated at 
the first equation, the one connecting the free energy to the pair correlation 
function, with an Ornstein-Zernike ansatz. In this approximation the theory can 
be considered as a sophisticated generalization of the optimized random phase 
approximation which has genuine nonclassical critical exponents and for which 
scaling is satisfied. We study the system of hard spheres plus the Lennard-Jones 
attractive well and find a good agreement with measured PVT, specific heat, 
correlation length, and structure factor in rare gases. The accuracy of the theory 
remains very good up to freezing density. 

KEY WORDS: critical phenomena; critical point; liquid state theory; rare 
gases. 

1. I N T R O D U C T I O N  

The need of a theory which treats correctly the region of the critical point 
of a single-component fluid, in both its universal and its nonuniversal 
aspect, starting from a microscopic interatomic interaction is widely 
recognized [1]. From the standard liquid state theories one does not get 
the correct scaling form for the thermodynamic properties and for the 
radial distribution function g(r) with nonmean field critical exponents. The 
renormalization group (RG) approach has not yet produced a practical 
scheme able to treat directly the statistical mechanics of a fluid. In the last 
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few years we have developed [2] a generalized perturbation scheme, the 
hierarchical reference theory of fluids (HRT), which accomplishes this goal 
at least for temperatures above To, the only region we have treated 
explicitly so far. 

Unlike RG we do not trace out degrees of freedom in building up a 
recursion relation but we look at how the free energy of the system evolves 
as we change a cutoff wave vector Q in the pair interaction. In this way at 
each stage we treat completely, i.e., on all length scales, a system which is 
partially coupled. Having divided v(r) in a "reference" part VR(r) which 
contains the strong repulsive part (here we take this as the hard-spheres 
potential) and in a "weak" part w(r)= v(r)-  VR(r), the partially coupled 
system (Q-system) is characterized by the interaction 

vQ(r) = VR(r) + wQ(r) (1) 

where the Fourier transform #e(k) of wQ(r) is 

kQ(q) = Sv~(q) for q>Q 
(2) 

for q < Q 

By this choice the density fluctuations with k <  Q of the Q system are 
strongly depressed compared with those of the fully interacting system and 
the critical fluctuations are gradually turned on as Q evolves from + oe 
down to zero. The evolution of the Helmholtz free energy A Q and of the 
n-particle (n=2,3,...) direct correlation functions c~(rl ..... r,) of the 
Q system for an infinitesimal change of Q is given by an exact hierarchy of 
equations and the properties of the reference system VR represent the 
boundary conditions. 

Two aspects should be stressed. First, close to the critical point and at 
short wavelengths the full hierarchy becomes identical to one of the for- 
mulations [3] of the RG. On the other end the hierarchy is much richer 
because it contains the large wavelengths part not given by RG. Second, 
the hierarchy is well ordered in many respects. For instance, the first two 
equations give the correct second virial coefficient of the equation of state 
at a low density and produce the correct e = 4 -  d (d is the spatial dimen- 
sionality) expansion of the critical exponents up to order e 2. Two of us [4] 
have already given the results of HRT when the hierarchy is truncated at 
the first equation for AQ by an Ornstein-Zernike (OZ) closure for eQ(r). 
The results for the hard-sphere system with an attractive Gaussian well 
compared favorably with the experimental data for rare gases but the 
limitation of that computation was that g(r) did not satisfy the core condi- 
tion. We have extended the theory to take care of this problem by 
implementing in our scheme the trick of the optimized cluster theory I-5], 
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i.e., by a suitable redefinition of wQ(r) inside the core. Here we present the 
results for the hard-sphere system with the attractive well of the Lennard- 
Jones potential. 

2. THE HIERARCHICAL REFERENCE THEORY OF FLUIDS 

In Paper I (see Ref. 2) we have deduced the exact equation governing 
the change of the excess Helmholtz free energy of the Q system, A~, when 
the parameter Q is varied. Specifically, if the modified free energy density 
A~ x is defined as 

ex __ ex j02 f A O P [~b(O)- ~bo(O)] + ddr[q~(r) A o -  k~T 2 -}- - ~bo(r)] (3) 

where ~(k)= -# (k ) / k  R T, the evolution equation for A~ x reads 

dA~ x 1 fp df2p 
- dQ = 2  =e ( ~  a ln[ l  + ~ Q ( P ) ~ ( P ) ]  (4) 

where the correlation function ~o(k) is given by 

~r = P (5) 
1 - p % ( k )  

The modified direct correlation function cgQ is related to the usual direct 
correlation function of the Q system cQ(k) by 

% ( k )  - cQ(k) + ~(k) - ~o(k)  (6) 

We have chosen to express all the physical quantities in terms of this 
modified correlation function because, due to the discontinuity in the 
potential of the Q system (2), the usual one has a discontinuity at wave 
vector k = Q. 

Equation (4) should be solved by imposing the appropriate boundary 
condition at Q = 0% where the potential vQ(r) reduces to the reference one 
and therefore the free energy is assumed to be known. However, the evolu- 
tion equation, (4), contains the unknown correlation function of the 
Q system ~Q(k). A possible solution of this problem is to write an evolution 
equation for the quantity cgQ(k) analogous to the one for the free energy 
(4). This has been done in Paper I, where it was shown that the resulting 
equation suffers from a similar problem: it depends upon the three- and 
four-particle correlation functions of the Q system, which are solutions of 
analogous evolution equations, and so on. This set of equations thus 
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defines an exact hierarchy of differential equations for the free energy and 
the correlation functions of the system. The resulting hierarchy can be 
explicitly analyzed in the critical region and at long wavelengths (i.e., for 
Q ~ 0 and k --* 0) and it can be shown to develop a renormalization group 
structure from which the usual dimensionality expansion (e expansion) can 
be obtained. 

However, in this note we are interested in a theory of the liquid state 
able to describe both the critical region and the dense fluid regime. We 
have therefore chosen to approximate the correlation function appearing 
into Eq. (4) using the understanding gained by the study of perturbation 
approaches in the framework of liquid state theory [6]. In order to 
preserve the renormalization group structure of the equation near the 
critical point, it is sufficient that the exact sum rule 

c~r = 0) - 02 A~x 
0p 2 (7) 

is satisfied [2] within our approximation at each Q: the evolution equation 
becomes a partial differential equation (PDE) because the relation (7) 
couples different densities. 

Starting from Eqs. (4) and (7) an elegant analysis of the critical 
universal properties can be performed. In fact in Paper I we demonstrated 
that, when the sum rule (7) is satisfied and the long-wavelength limit of the 
direct correlation function is analytic in k 2 (that is, the critical exponent ~t 
vanishes), the critical behavior of the system is universal and nonclassic: the 
critical exponents can be obtained studying the fixed point solution of a 
suitably rescaled form of Eq. (4) in complete analogy with the renormaliza- 
tion group method. The explicit values of the critical indices for such an 
Ornstein-Zernike closure are (in three dimensions) 

v = 0.689, 7 = 1.378, fl = 0.345, ,5 = 5 (8) 

These values, being 10% higher than the commonly accepted ones, are the 
best estimates of the critical exponents obtained within the framework of a 
theory of the liquid state, and this suggests that the approach we have 
adopted can be used for an extensive investigation of the universal as well 
as nonuniversal properties of a simple fluid in the critical region even if we 
limit ourselves to this class of OZ closures which preserve the analyticity 
in k of the correlation functions at the critical point. 

The simplest closure satisfying the above prescriptions corresponds to 
the well-known random phase approximation (RPA): 

cge(k ) = cR(k) + 2e~(k ) (9) 
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where 2Q is a parameter determined so that Eq. (9) satisfies the sum 
rule (7) .  The thermodynamics resulting from this approximation 
[eqs. (4), (7), (9)] has been analyzed in a previous publication [4]: its 
weakest feature is probably the poor representation of the short-range 
structure of the liquid induced by the RPA ansatz (9). In fact it is known 
that RPA does not satisfy the short-range constraint on the radial distribu- 
tion function: g(r) = 0 when r is less than the hard-sphere diameter a (core 
condition). We have succeeded in including this requirement in our theory 
using an optimization procedure analogous to the one proposed by Weeks 
et al. [5] with the optimized cluster theory (OCT), in liquid state theory. 
This amounts to redefining the potential at separations smaller than the 
hard-sphere diameter in such a way as to obey the core condition. We 
stress in our case that the core condition must be satisfied by the true radial 
distribution function of the Q system for each value of the parameter Q. 
Therefore in place of Eq. (9) we have analyzed the approximation 

M 

%(k) = c (k) + + E % # / k )  (10) 
j=O 

where Pj(r) is a basis of polynomials in the range 0 < r < e and the coef- 
ficients u~ are determined at each Q by the requirement that 

gQ(r) =-- 1 + f d3k CQ(k) eik. r 
31 = 0 for r < a  (11) 

and the relation between cgQ(k) and cQ(k) is given by (6). We have followed 
the standard prescription of liquid state theory limiting the basis set to the 
first five Legendre polynomials. Even in this case the equations turn out to 
be exceedingly difficult because the core condition is to be imposed at each 
Q and p and is coupled to the partial differential equation for the free 
energy (4). We have approximated the evolution equations for the coef- 
ficients u~ by neglecting the feedback of fluctuations on the short-range 
properties of the system. In this way the problem simplifies, allowing for an 
explicit numerical analysis. We have verified that this approximation is 
highly successful, gQ(r) being below 10 -2 inside the core as is standard in 
OCT computations. 

Equation (4) can be written as a f lux conservative parabolic equa- 
tion [7] by taking its derivative with respect to the density and considering 
the dimensionless excess chemical potential 

c?A~ x 
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as the basic unknown function. In these terms the explicit equation 
becomes 

~ x  O~ ~ [ p~(O) 
OQ (4n2) c~ p In 1 + 1 ----~Q(Q)J (13) 

where cgQ(k) is given by Eq. (10) and the parameter 2e is expressed in 
terms of the chemical potential by Eq. (7): 

( a ~  x ' ~ 1 
~Q=\--~-p -cRik=0)-  E ubP/k=0)/ (14) 

j=o ~(k = 0) 

The reference system has been taken as a hard-sphere fluid and its proper- 
ties have been computed using the Verlet-Weis parameterization of the 
correlation functions and the Carnahan Starling equation of state [6]. 
The attractive part of the interaction w(r) is a Lennard~ones potential 
computed following the WCA procedure [5]: 

f ~ s  if r ~ 21/60. 

w(r)= a 12 (o.)61 (15) 

The five coefficients u~ are determined at each density by solving the set of 
evolution equations 

4 dlgQ_ Q2 ~-~(Q) ~(Q) 

Z Mj.(Q) dQ - (2n2--~ pj(Q) 1 + ~o(Q) ~(Q) 
n = O  

Q2 

de Mj.(Q)= -fig(Q) - ( 1  + ~--~)) ~(Q)] J 
d3k (16) 

Mj.(Q= oo)=p2 f ~ Pj(k)s 

~ .  ~ ,  ~(k) 
s  = P~(k) - r .~o~ f - ~  

where SR(k ) is the structure factor of the reference system. This PDE has 
been solved by a Lax-Wendroff finite-difference method [7]. The initial 
condition at Q = ~ is given in terms of the reference system properties, 
while the boundary condition at p = 0 is obtained by expanding all the 
quantities appearing in Eq. (13) in powers of the density, equating the 
coefficients of corresponding powers and solving the resulting ordinary 
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differential equations. The numerical scheme we have employed also needs 
a boundary condition at high densities, which has been imposed at pa 3= 1 
using the optimized random phase approximation (ORPA). 

3. RESULTS 

The numerical solution of Eq. (13) provides a complete description of 
the thermodynamics as well as the structure of a Lennard-Jones fluid, 
meaningful also in the critical region. It is interesting to discuss our results 
and to make a comparison with the available experimental data in simple 
fluids and computer simulations for Lennard-Jones systems. As a first step 
we briefly comment upon the evaluation of the universal quantities. The 
approximation (t0) we have considered preserves, as noted before, the 
analyticity of the direct correlation function at the critical point and there- 
fore we expect that the universal asymptotic properties of the system in the 
critical region are described by the set of critical exponents (8). This expec- 
tation will be satisfied by the present numerical computation provided that, 
at the critical point, the solution of Eq. (13) evolves toward the fixed point 
we analyzed in Paper I. In our computation we have verified that this is the 
case: the critical exponents computed from the numerical solution of 
Eq. (13) agree with the values (8) previously obtained. 

In discussing the nonuniversal quantities in the critical region and, 
more generally, the properties far from the critical region, we face the 
problem of comparing our result with experimental data, which necessarily 
refer to a different interaction. In fact the potential we choose in our com- 
putation is unrealistic at short distances, having a hard core, and does not 
reproduce correctly the shape of the attractive well as predicted by more 
refined interactions. For these reasons we first compare our result with a 
Monte Carlo simulation performed by Stell and Weis for a system interact- 
ing by exactly the same potential we have used [8]. Our estimate for the 
critical temperature has been obtained by a power-law fitting of the values 
of S(k = 0) along the critical isocore p*= 0.312 (in units of a-3). The criti- 
cal exponent 7 is in excellent agreement with Eq. (8) and the critical tem- 
perature is T* = 1.3502 (in units of e/kB). This result is consistent with the 
observation made by Stell and Weis [8] that the state p*= 0.3, T* = 1.35, 
is already in the metastable region for this potential. In Table I we compare 
the values of the compressibility factor Z=-P/pkBT, obtained from the 
chemical potential from the solution of Eq. (13) (compressibility route), the 
evaluation via the virial theorem and the Monte Carlo result. We also 
report the values g(l ) of the radial distribution function at r = a at densities 
and temperatures where the simulation data are available. In Fig. 1 we plot 
the radial distribution function in our approximation together with the 
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Table I. Comparison Between the MC Results for the Compressibility Factor ZMc 
and the Value of g(r)Mc at Contact for Hard Spheres with the Attractive Well Eq. (15) 

and the Results from the HRT, Z~ from Compressibility, and Z v from the Virial Relation 

p* T* ZMc Zo Zv g(1)M c g(1) g(1)ORPA a 

0.2 1.6 0.67 0.666 0.636 1.94 1.810 1.708 
0.6 1.6 1.12 1.09 1.142 2.57 2.6 2.592 
0.91 1.35 5.41 5.313 6.032 4.90 5.193 5.202 
0.91 2.74 8.75 8.330 8.652 5.15 5.23 5.255 

a This column is the results from ORPA for g(r) at contact [g(r)ORPA]. 

"exact" result from simulation for the states p*=0.6,  T * =  1.60, and 
p*=  0.91, T * =  1.35. At these high densities our basic approximation for 
the correlations, similar to ORPA, is satisfactory, as can also be seen from 
the good degree of thermodynamic consistency between Ac and Zv shown 
in Table I, and our theory represents an improvement with respect to 
ORPA. At low densities our results are not as good because Eq. (10) is not 
a good representation of the correlations in the system and it does not 
correctly reproduce the virial expansion as p ~ 0. 
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Fig. L C o m p a r i s o n  between M o n t e  C a r l o  s imula t ion  of 
Stall and Weis and the results of HRT. (a) g(r) at T* = 1.6 
and p* =0.6. The solid l ine is the H R T  result  and filled 
circles are the MC data. (b) g ( r ) - i  at T * =  1.35 and 
p * =  0.91. Dashed l ine, HRT; filled circles, MC data. 
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The dimensionless compressibility S(0) is plotted in Fig. 2 versus the 
reduced temperature t =  ( T - T c ) / T c  along the critical isocore. The con- 
tinuous curve is the fit of scattering data in xenon taken from Ref. 9. The 
fit contains both the asymptotic power-law behavior and the correction to 
scaling terms. Keeping in mind that we have no adjustable parameters, the 
agreement is remarkable but our computation systematically overestimates 
the experimental results in the whole range of temperatures. This could be 
due either to approximation (10), which is inaccurate at these densities, or 
to the difference between the interatomic potential we have used and the 
true potential. In Fig. 2 we also show our results for the correlation length 

(with a u = 4 . 0 7 , ~ )  together with the asymptotic fit of experimental 
measures in xenon [10]. We observe a very good agreement except at the 
lowest temperatures, where the effect of the difference between our estimate 
of the critical exponent v (8) and the correct one is important. 

In Fig. 3 we compare the compressibility factor Zc to experimental 
data in argon [11] along the isotherm - l l 0 ~  We plot the numerical 
results corresponding to the same absolute temperature (using the standard 
Lennard Jones representation of argon with e/kB = 119.8 K) and to the 
same reduced temperature t, which corresponds to a different absolute tem- 
perature (10 % higher) due to the discrepancies between our estimate of the 

._ .x  

% % 

I �9 ..a 

10 -~ 10 -3 10 -2 10 -1 

t 

Fig. 2. S(0) and correlation length ~ from the HRT (respectively, filled and 
open circles) compared with the fits of the data in xenon. On the X axis 
t= ( T -  Tc)/T c. 
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Fig. 3. Equation of state for argon at T=  -110~ (filled 
circles) compared with the results of the theory at the same 
absolute temperature (dashed line) and at the same reduced 
temperature t (solid line). 
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Fig. 4. Structure factor S(k) for krypton from the theory 
(solid line) compared with the experimental data. 
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critical temperature (T*  = 1.3502) and its value in argon (T*  = 1.258). We 
see that these two curves bracket the experimental result, suggesting that 
the origin of the deviation is related to the different critical temperatures of 
the two systems. 

In Fig. 4, the structure factor of our approximation is compared to 
scattering measurements in krypton [-12] at temperature T =  297 K and at 
a density (p = 6.19 • 1027 atoms .m -3) which is close to the critical value. 
In terms of reduced units (e lk  B = 166.2 K, a = 3.68 ~), this corresponds to 
T* = 1.79 and p* = 0.308. 

4. DISCUSSION 

We can summarize the comparison with experiments by noting that 
our results for the thermodynamics are as accurate as the most reliable 
theories of liquids in the dense fluid regime but, at the same time, are 
meaningful also in the critical region where all the theories of liquid state 
fail. The correlations are reproduced with the same accuracy as ORPA, 
which is considered a successful theory of the liquid state in the dense 
region. An improvement of approximation (10) is needed at lower den- 
sities, where the low density virial expansion should be built in our closure 
for the direct correlation function. An additional way for improving our 
basic ansatz (10) is to parameterize cge(k ) with an additional coefficient to 
be determined by imposing thermodynamic consistency between the com- 
pressibility and the virial route. The study of such a fully consistent HRT 
with OZ closure is currently under way. The other way to improve the 
present theory is to consider also the second equation of the full hierarchy 
by introducing a suitable closure at the level of c ~3) and c ~4). 

In liquid state theory one often introduces an improved description by 
imposing condition of thermodynamic consistency (see, for instance, 
Ref. 13). This consistency, however, is imposed with respect to the full 
interaction. In our theory a consistency condition such as Eq. (7) is 
imposed all along the Q integration, i.e., it operates as we turn on the 
density fluctuations on the different length scales. It is this fundamental 
difference which distinguishes the two approaches and builds scaling and 
nonclassical critical exponents in our approach. 
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